J. DIFFERENTIAL GEOMETRY
39 (1994) 559-603

L’ COHOMOLOGY OF CONES AND HORNS

BORIS YOUSSIN

Abstract

We prove the conjecture of J. Brasselet, M. Goresky, and R. MacPherson
on the isomorphism between L? cohomology and intersection cohomol-
ogy for a stratified space with a Riemannian metric and conical singular-
ities. We prove the extension of this conjecture to spaces with f-horn
singularities, where f(r) is any C°° nondecreasing function.

We study the If Stokes property which states that the minimal closed
extension of d acting on Lf forms coincides with the maximal one. We
prove that it implies the Borel-Moorse duality between the complexes of
I? forms and L? forms. We also prove the converse for spaces with
f-horn singularities under the condition that the integral foe J (r)_1 dr
diverges.

1. Introduction

J. Cheeger [4] discovered that the IL? cohomology of a compact strati-
fied pseudomanifold with respect to a metric which has conical singulari-
ties, is isomorphic to its upper middle-perversity itersection cohomology.
He showed that this is also the case for the singular metrics which he called
f-horns; locally they are of the form d g f (r)zg where r is the radial
coordinate (i.e., the distance from the singular point), g is the metric on
the link of the point, and f is a function of » of the form f(r) = r® with
¢>1;incase ¢ =1 we geta cone. If L is the link, then the f-horn over
it is denoted C'L. (See Definitions 3.1.1 and 3.2.1.)

M. Nagase [7] considered the case ¢ < 1 and showed that when I?
cohomology is isomorphic to the intersection cohomology, although with
a different perversity, greater than the middle one and dependent upon the
value of c.

J. Brasselet, M. Goresky, and R. MacPherson [2] conjectured that the
L? cohomology of a metric with conical singularities is isomorphic to the
intersection cohomology with a perversity 7 which corresponds to L?
cohomology: p(k) = max{i € Z|i < k/p}.
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Here we consider the L” cohomology of f-horns for any p, 1 < p <
oo, and for any function f which is nondecreasing and C* for r >
0. We introduce the (L?, f)-perversity perv,, . to generalize p (see
Definition 3.1.4) and we prove the following gerferalization of the above
conjecture.

Theorem (See Theorems 3.1.2 and 3.3.1.). (a) Suppose that the maxi-
mal closure of the operator d in the Banach space of all L? forms on the
link L has closed range. Then the L? cohomology of the horn C'L is
given by

Hp,(L) ifk <pervy, (dimL+1),

HS (L) =
v 0 if k > perv,, (dimL+1).

(b) If X is a stratified space with a metric and f-horn singularities, then
Hp(X)=IH, = (X). | |

The idea behind this theorem is as follows. In the low degrees the
radially constant forms (the ones which are pullbacks from the link) on
the horn Cf L are L’ integrable, and this is why the I? cohomology
of /L are isomorphic to the If cohomology of the link. In the higher
degrees the radially constant forms are no longer I? integrable, and the
I” cohomology of C/L are zero.

The proof uses the explicit integral homotopy operators, introduced by
Cheeger [4], which come from the two contractions: the first one contracts
the horn (which is topologically a cone) to its vertex and is used to prove
the vanishing of L” cohomology in the higher degrees; the second one
contracts the punctured horn (with the vertex removed) to the link and is
used to prove the cohomology isomorphism in the lower degrees.

Our second result concerns the Lf Stokes property. This property can
be formulated as follows: the maximal closed extension of the operator
d in the Banach space of all L? forms coincides with its minimal closed
extension, so that no “ideal boundary conditions” at the singularities can
be imposed. (See Definition 4.1.1.)

This property was first introduced by Cheeger [4] in case p = 2 (he
called it L? Stokes theorem) for the following purpose: he showed that it
implies that the natural homomorphism from the space of L? harmonic
forms to L’ cohomology is monomorphic.

We reformulate this property in the sheaf-theoretic language (see Defi-
nition 4.1.1) and show that it implies the duality between L” cohomology
and L? cohomology for 1/p + 1/g = 1, where the duality is understood
in the Borel-Moore sense (see Theorem 4.3.1). In case p = ¢ = 2 this
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means that the L> Stokes property implies that L? cohomology is dual to
itself, i.e., satisfies Poincaré duality, in agreement with the results of [4].

In case p = 2 [4] it turned out that the converse is true: if the ?
cohomology is dual to itself, then the L? Stokes property holds. More
precisely, according to the calculations of [4], the L? cohomology is iso-
morphic to the intersection cohomology with respect to the upper middle
perversity, hence, it is dual to the intersection cohomology with respect to
the lower middle perversity; the two are the same on the sheaf theoretic
level if and only if the middle-degree L? cohomology groups of the links
are zero (or the links are odd-dimensional, as in case of complex-analytic
spaces). According to [4], this is the condition for the L? Stokes property
to hold. In other words, although the L* Stokes property does not hold al-
ways, the only obstruction to it is of cohomological nature: the L? Stokes
property holds if and only if there is duality in the L? cohomology.

We generalize this statement to the case of any p and any f.

Theorem (See Theorem 4.9.1). Suppose that the integral f(f f (r)_1 dr
diverges. Then the L Stokes property holds on a space with f-horn sin-
gularities if and only if its L cohomology is Borel-Moore dual to its L7
cohomology. :

The condition that the integral f; f (r)—1 dr diverges, is sharp: if it is
not satisfied, then for any space with f-horn singularities-and for some p,
the L? Stokes property does not hold (see Example 5.12.1) even if there
is no cohomological obstruction to it (i.e., if the duality holds between L*
cohomology and L? cohomology).

In §2 we develop a general theory of L? cohomology. We define the
relevant complexes of sheaves and apply them to show that the L” coho-
mology defined by using only the smooth L? forms is the same as the L?
cohomology defined by using all L” forms. We give a condition for our
sheaves to be fine (“partitions of unity with bounded differentials™).

In §3 we define the horn singularities and formulate our theorems con-
cerning the isomorphism of L” cohomology and intersection cohomology.

In §4 we define the L Stokes property, prove that it implies the coho-
mological duality in general, and formulate the converse in case of horns.

In §5 we prove our theorems about spaces with horn singularities.

2. Generalities on ° cohomology

2.1. The two closures of d. Let (X, g) be any Riemannian manifold,
not necessarily compact, and let E be a unitary local system on X with



562 BORIS YOUSSIN

the pairing E® E — C fixed. We shall assume that all differential forms
take values in E.

Denote by Ag(X , E) the space of C™ k-forms on X with com-
pact support. let p be a real number, 1 < p < o, and denote by
le,, (X, g, E) the space of such k-forms @ on X with locally summable
coefficients for which the integral [, |w|’d vol ¢ converges, where [w| is
the pointwise norm of « with respectto g, and d vol < is the volume form

of g. This is a Banach space with the norm |||, = ([, lw|Pd volg)l/’J .

Denote by AII‘}(X , g, E) the space of all C*° formslying in lep(X , &, E).
We shall omit X, g and E from the notation when it does not cause con-
fusion. '

We denote A3, (X, g, E) =@, A5 (X), QL (X, g, E) =@, Q5 (X).
Let

domd},(X, g, E) = {w € A, (X)|dw € AL:(X)},
domdzp(X, g, E)= @domdfp(X, g, E).
All these topological vector spaces depend only on the quasi-isometry class
of g. (Two metrics g and g’ are said to be quasi-isometric if there exist
global constants C, C' >0 suchthat Cg < g’ < C'g.)

The operator d in Qj,(X) is densely defined on the subspace
dom d,:p(X ). It has a weak closure: da = § in the weak sense if a, f§ €
QZP(X ) and da = f as distributions. The following proposition is well
known.

Proposition 2.1.1.  The weak closure of d in Q},(X) is also its strong
closure, and the latter is well defined.

Proof. We need to show that if da = f in the weak sense, then for
any & > 0 we can find o, € domd;,(X) such that |a —a,l,» < &,
lda —dea,|,» < &. If X isadomainin R® with Euclidean metric, then
this statement is due to [5]; the general case follows immediately. g.e.d.

Denote the weak (= strong) closure of d in QZ,(X ) by d, and its
domain by domazp (X,g,E).

The Banach spaces Q7,(X, E) and Q;,(X,E) are dual to each other
if 1/p+ 1/g =1; we define the duality pairing by

(o, ¢>H/X(—1>"“‘“)’2m¢,

where w € Q7,(X, E), ¢ € Q1(X,E), k=degw.

Proposition 2.1.2. The adjoint to the operator d in Q7«(X,E) is the
strong closure of d: Ay(X) — Ay(X) in the space w € Q;(X,E). In
particular, this strong closure is well defined.
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(The proof goes by a standard argument.) .

Denote by d_ . the strong closure of d: Aj(X) — Aj(X) in Q},(X, E),
and its domain by domE.L,’min(X , 8, 8).

We shall consider Aj(X), domd;,(X), domd,,(X), and
dom Z;,,min(x ) as complexes with differentials d,, &, d, and Emin .

2.2. The cohomological approximation theorem.

Theorem 2.2.1. The inclusion domd;,(X) — domzz,, (X) induces the
isomorphism of cohomology.

The proof of Theorem 2.2.1 is in §2.7.

In case p = 2 this theorem was proved by J. Cheeger [4, Appendix].
However, 1 chose not to follow Cheeger’s ideas as I had trouble under-
standing one point in the proof there, namely, why the operator R, =
-0 R(sz a0 R'sl ., on page 144 of [4] is always smoothing.

My trouble is as follows. Denote the chart in Y on which the operator
R, , is constructed, by ¢,: (=1, 1)" 5 U, c X. This operator has the

(P
property that for any IL? form 6 on Y, the form R, .0 is smooth on
$,(—1/4, 1/4)" and coincides with 6 outside of $,(—1/2,1/2)" . How-
ever, the operator R, , may, in principle, destroy the smoothness proper-
ties in the region ¢,[(—1/2, 1/2)"\(=1/4, 1/4)"] asit involves the integral
operator # . Hence, even if the composite operator R, Lie1© "'°R81 )
is smoothing on the union of the regions ¢,(—1/4, 1/4)" for j < i, the
application of R, ; may destroy the smoothing property on the part of
this union which intersects with ¢.{(—1/2, 1/2)"\(-1/4, 1/4)"]. This is
why it is not clear to me why the operator R, = --- o R(52 ,oR, | is
, L

smoothing.

2.3. The sheaves.

Definition 2.3.1. A singular Riemannian space is a topological space

with an additional structure consisting of an open subset X C X (“the

]
top stratum™) and the structure of a C* Riemannian manifold on X .
By abuse of notation we shall often denote a singular Riemannian space
and its underlying topological space by the same symbol.

Let X be a singular Riemannian space, and let E be a unitary local
<] —_
system on X with the pairing E®QE — C.
We define the sheaf QZ,, x g 1n the following way: for each open set
U c X, the space of sections I'(U ; sz x.g) 1s the space of all forms @

on U N X which have the property that for every point P € U there is
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some neighborhood ¥V of P in U such that lemo( € QL (V nx ,E).

In other words, Q I’ X.E is the sheaf of forms which are locally L? in
a neighborhood of any point of U, regular or singular. This means that
these forms must be L? at all regular points and satisfy certain growth
condition near the singular points; there is no restriction on the growth at
the boundary of U.

The sheaves ALp X.E> domde X.E and domd, .x.g e defined in
a similar way: a sectlon at P of one of these sheaves is required to lie
in the space ALp(VﬂX, E), domde(VﬂX, E), or domde(VﬂX, E)
respectively, for some open neighborhood ¥V of P. All these sheaves
are the sheaves associated to the presheaves formed by the corresponding
vector spaces of L? forms.

The sheaves A0 X.E and domd, 7 min, x g OUS be defined somewhat
more carefully a section at P must commde with some element of the

space AO(VﬂX ,E) or domd, VﬂX , E) in a smaller neighborhood

L?, mm(
V' of P. The reason is that the elements of the spaces AB(V NnX) and

dom Zzp minl? N X) satisfy certain vanishing conditions at the outside
boundary of ¥V which we do not impose on the sections of the sheaves
Ao x,g and domdp 0 v g

All these sheaves are graded by the degree of the forms so that

. k
QL",X,JE = @QL”,X,}E’
k
. k
AL”,X,]E=®AL”,X,}E’
k
. k
domdL,,,X’]E = @domde,X’E,
k
—e —k
domdL,,,X’]E = @domde,X’E,
k
. k
AO,X,]E = @AO,X,]E’
k

e —k
domdL”,min,X,]E = @domdL",min,X,]E'
k

As before, we shall drop E, and even X, from the notation when it
does not cause confusion.
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Note that Aj , = j!Azp 3 where j: X < X is the imbedding map.
We also define the sheaf

—e —k
domdL,;,O’X,]E = GBdomdL,,,O’X,]E
k

by the formula domzzp,o, x = J domzzp’ 25 this is the subsheaf of

dom Ezp y consisting of all forms whose support does not intersect X\.X .
The differentials d, d, dy, Emin, and EO make dom dzp , domgzp,
AB , dom E.L,,,min, and dom E.Lp 0 complexes of sheaves.
If X is compact, then

domd},(X) =T(X; dom D}, ),
domgzp(i’) =I(X; domZi—zp,X),

AJX) =T(X; A ),

domd; ()o() =T(X; domgzp ,minX)'

L?  min
We shall sometimes write domd;,(X) and domd;,(X) instead of

dom dz,,(i’ ) and dom Ezp(i’ ), respectively.

2.4, Collars and cubes. Consider the open segment (0, 1) with the
Euclidean metric d , and the product (0, 1) x X with the direct product
metric and with the local system pulled back from X . By [0, 1), (0, 1],
and [0, 1] we shall denote the segment containing one or both of its
endpoints. -

Theorem 2.4.1. The homomorphisms of complexes

pr: domd,,(X) — domd,,((0, 1) x X)

and _
pr': domd,,(X) — domd;,((0, 1) x X)

defined by the projection pr: (0, 1) x X — X, induce cohomology isomor-
phisms.
For p =2, E = C, this is Theorem 2.1 of {4]. The proof given there
extends to the general case without any changes whatsoever.
Corollary 2.4.2. For any local system & on X as above, the homomor-
phisms
domd;,(X) — domd;,((0, 1)" x X)

and
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domd,,(X) — domd,»((0, 1)" x X)
induce cohomology isomorphisms.

Consider the case X = (0, 1)® with the Euclidean metric. Of course,
in this case the local system E has to be trivial, say, E has to be trivial,
say, E=C.

Corollary 24.3. The complexes domd,,((0,1)",C) and
dom ZI:,((O , )", C) are resolutions of the trivial local system C.

Both corollaries are obvious.

Let us turn to the “sheaf-theoretic” analogues of these results. Let X be
a singular Riemannian space. We shall consider (0, 1] x X as a singular
Riemannian space in the following straightforward way: its top stratum is

(0, 1) x X and the metric is the direct product. As before, we assume the

local systent is pulled back from /% . A homomorphism of complexes of
sheaves is called a quasi-isomorphism if it induces isomorphisms on the
stalk cohomology.

Corollary 2.4.4. The homomorphisms of complexes of sheaves
pr’ domd;, y — domd;, o .y and pr’ domzzp, . domdL,, 0. 11%X
are quasi-isomorphisms.

Proof. This follows immediately from Theorem 2.4.1.

Theorem 2.4.5. The homomorphisms of complexes

pr:I(X; domd}, 4)— T((0, D" x X, domdzp’(o’l)nxx)
and
pr': T(X; domdy, ) - T((0, 1)" x X; domdy, (o 1ynyy)

induce cohomology isomorphisms.

Proof. The statement is similar to Theorem 2.4.1 and Corollary 2.4.2.
The same homotopy operators (see §3 of [4] or the proof of Lemma 5.2.3)
work equally well in this case.

Theorem 2.4.6. For any smooth contractible Riemannian manifold Y ,
the homomorphisms of complexes

pr': T(X; domdy, ) —T(Y x X; domdy, y, )
and .
pri:T(X; domd, y)— (Y x X; domde rxx)

induce cohomology isomorphisms, where pr denotes the projection ¥ x X —
X.

Proof. Denote by pr, the projection ¥ x X — Y. It follows from
Theorem 2.4.5 that the complex of sheaves pr},,,‘domdzp,y>< y on Y
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is quasi-isomorphic to the complex of constant sheaves on Y given by
I'(X;domd}, ,).

Since Y is contractible, the hypercohomology of any complex of sheaves
F* on Y (which is a quasi-isomorphism invariant) is isomorphic to the
cohomology of the complex of global sections I'(Y ; #°), which is, con-
sequently, also a quasi-isomorphism invariant.

Hence, the cohomology of the complex I'(X ; dom dzp , x) is isomorphic
to the cohomology of T(Y ; pry , domd}, y, )=T(YxX; domd}, y, x).

This is the first statement of our theorem, and the second statement is
proved similarly. q.e.d.

Consider the imbedding j: (0, 1) x X — (0, 1] x X .

Corollary 2.4.7. The imbeddings of complexes of sheaves

dom dL",(O, 1xx < J, dom dL",((), DxX

and

dOmdLP’(O,”XX — j* domde,(O,l)XX

are quasi-isomorphisms.

Proof. By Corollary 2.4.4 and Theorem 2.4.5, both complexes of
sheaves are quasi-isomorphic to pr* dom\dzp X

2.5. L? cohomology of compact manifold with boundary. Let X be a
compact Riemannian manifold with boundary X . We shall consider it

a singular Riemannian space with the top stratum X = X\0.X.

Note that a section of the sheaf dom dzp y isa C* form on i’ which
is L” near 8.X . Because of this, we shall use (both here and in §2.6) the
following convention: a C* form on X means that it is C* only on

X ; it does not mean C° through the boundary 9.X .

Proposition 2.5.1. The inclusion dom dzp’ x < domg'Lp, y Induces a
quasi-isomorphism of complexes of sheaves.

Proof. The statement is local on X . At any point of X there is a
fundamental system of neighborhoods which have the property that each
of them is diffeomorphic to a cube and the restriction of the metric on it is
quasi-isometric to the standard metric on the cube (0, 1)". Consequently,
the quasi-isomorphism follows from the results on the cubes (Corollary
2.4.3).

Lemma 2.5.2. In this case both dom dzp, x and dom 32,,’ x are com-
plexes of fine sheaves.

(Obvious.)
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Corollary 2.5.3. In this case
(1) H'(domd;,(X)) = H"(domd;,(X)) & H

(Obvious.)

2.6. Strong approximation on compact manifold with boundary. Let
X be a compact Riemannian manifold with boundary 8X. We shall
assume that the boundary is a union of two disjoint (possibly empty) parts,
0X =0, XU08,X. Let U, and U, be some neighborhoods of 4, X and
d,X , respectively.

Proposition 2.6.1. Suppose that w isan L” formon X, which is C™
in U, and such that dw isa C* form everywhere in X . Then for any
¢ > 0 we can find y, € domd;,(X) such that |w,||,» < ¢, |dy,ll» <
e, w+ 31//5 is C° on X\U, and Supp y, does not intersect X . (In
other words, vy, is supported outside some neighborhood of X , possibly
smaller than U LU, .)

Proof. Case 1: ® is an exact form, w = d¢ with ¢ an L? form.
By the definition of the strong closure of 4, for any & > 0 we can find
¢, € domd;,(X) such that [|¢, — ¢|l,, < ¢ and ||dé, —do|,, < €.
Choose a C™ truncation function f which is equal to 1 on X\(U, UU,)
and O in a neighborhood of dX , and take w, = f(¢,,—¢). Then co—l—?ﬁua
is C™ in X\U,. If & is small enough, then [y |l;» <&, ldw,ll,» <¢.

Case 2: w is a closed form, ie., dw = 0. Using the cohomology
isomorphism (1), we can find a C* form o € domd;,(X) which is
cohomological to @, ie., @ = ' +d¢ where ¢ € domd;,(X); in partic-
ular, d¢ is C*° in U, . Applying the argument of Case 1 above to d¢,
we get v, € domd;,(X), such that (|y,||,, < &, ldv,l|,» <&, d¢+dy,
is C* in X\U,, and Suppy, does not intersect X . As d¢ +dy, is
C* in X\U,, w+dy, =o' +d¢ +dy, isalso C* in X\U,.

Case 3: w is any form in domd;,(X) which is C* in U, and such
that dw is C™ everywhere. As dow is C™, we can use the cohomology
isomorphism (1) to find ¢ € dom D},(X), such that d¢ = dw. Then
dw-¢) =0, —¢ € dimd},(X), and  — ¢ is C* in U;. The
argument of Case 2 above yields y, € dom Ezp (X) such that [lw ||, <&,
||3y/8||Lp <e, w—¢+3y/8 is C* in X\U,, and Supp y, does not intersect
8X.As w—¢+dy, is C* in X\U, and ¢ is C™ everywhere, w+dy,
is C%* in X\U,. :

2.7. Strong approximation on smooth noncompact manifold.

Theorem 2.7.1. Let X be any Riemannian manifold. Suppose that
w isan L? form on X whose differential is C* ; in other words, w €

(X; E).
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domd ,(X), dw € domd},(X). Then for any ¢ > 0 we can find y, €
domd ,(X) satisfying | |» <e¢, Ildw,ll,» <e, and o +dy, is C
Proof. Take a C° exhaustion function f: X — R such that
f_l((—oo, ¢]) 1s compact for any ¢ € R. The set of critical values
of f is closed in R and is of measure zero; hence, its complement is
open and dense in R. We can choose an increasing unbounded sequence

¢, ¢, -+ € R in this complement. Then f _‘(cl.) is a smooth compact
submanifold in X for any i.
Fori=1,2,3,---,letY,= f‘l([cl 25 l+1]) ; it is a compact smooth

manifold with boundary 8Y, = [~ (cl JUS (cl L) (we assume ¢, =
¢c_,=-o0 and [ (—oo) ). Let Y =Y\oY, = f~ ((cl_z, Cipy)) -
We shall construct y, as y, = x,+x,+X3+ -- where x; € domﬁ;f(X ),

Supp y, C f’i e <€, lldxlle <é;,and Ze; < . The forms yx, are
constructed inductively in such way that ¢, = w+3(x1+ Xpte X)) 18 Cc”
on f((—o0, ¢;]) (for i = 0 this is trivially satisfied as f_l((—oo, )
is empty). In other words, we need to construct x, , so that ¢
®; +3xl+1 is C* on (- 0, ¢ 1)

Apply Proposition 2.6.1 for the compact manifold Y, , whose bound-

ary 0Y, , consists of two parts, ie., Y, , = 9,Y, , Ud Y+1 , where

Y, = f_l(ci—l) and 9,Y, | = f_l(ci+2)' Let U, = [~ ([Ci—l’ ¢;))
-1
and U, = ((¢;y)» €5,]) - _
Let 7, = ¢,ly ¥ this form is C* on U, and dn, is C* everywhere

i+1

on Y, .

that ”WEiH < é&. Hd‘//gMH <ée

Proposition 2.6.1 yields a form V.. € domd »(Y;,,) such
ni+3y/ is C* on Y‘H\U2 =

i+1°

f—l([ci_1 , ¢;.1]), and Supp v, € f—l((cl._1 , l+2)) The latter property
shows that y, | can be extended by zero to the entire X ; let x,,, be this
extension. Then y,,, € domd},(X), Iz, = v, NI <&y dx;, (I =

lldt//g ]] < 8: 1 - Finally, ¢i+ﬁxi .1 coincides with ¢, on some neighbor-
hood off (=00, ¢;_,1), and with ni+3¢//£. on Y,

is C* on f_l((—oo,cm]). q.e.d.

Proof of Theorem 2.2.1 (The cohomological approximation theorem).
Our argument in Cases 2 and 3 in the proof of Proposition 2.6.1 shows
that the cohomology isomorphism between the complexes domzp (X) and
dom 32,, (X) implies the “strong approximation” of the kind asserted in
Proposition 2.6.1 and Theorem 2.7.1. It is not hard to see that this

; hence, ¢, +dyx

i+l i+1
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argument can be reversed to show that the “strong approximation™ of
Theorem 2.7.1 implies the cohomology isomorphism of Theorem 2.2.1.
g.e.d.

Corollary 2.7.2. For any singular Riemannian space X and any local
system K, the imbedding homomorphism domde x g — dom d, ?.xE S
a quasi-isomorphism of complexes of sheaves.

(Obvious.)

Definition 2.7.3. For a Riemannian manifold X, its L cohomology
H;,(X;E) is the cohomology of the complex domd},(X; E) or, equiv-
alently, dom 32,, (X;E). For a singular Riemannian space X, its L’

cohomology Hz,, (X; E) isthe L cohomology of its nonsingular part X’ .
Clearly, if X is compact, then

(2) H(X;E)= H (I(X; domdy, , )= H (I'(X; domEZ,,X,E)).

2.8. Partitions of unity with bounded differentials. Let X be a locally
compact singular Riemannian space.

Definition 2.8.1. We say that X has partitions of unity with bounded
differentials if for any point P € X and any neighborhood U C X of
P we can find a continuous function f: X — R which is equal to 1 in
some smaller neighborhood of P, has compact support inside U, is C™

on X’ and such that the pointwise norm of its differential |df| is globally
bounded.

The reason for the name is that if this condition is satisfied, then for any
open covering X = |J U, we can find a locally finite refinement X = {J Ui'
(so that each Ui' lies inside some U;) and a partition of unity 1 = > f

where each f; is continuouson X ,is C °° on X’ , Supp f; C Ui’ and there
exist some bounds [df;| < C;.

Proposition 2.8.2. If X has partztzons of unity with bounded differen-
tials, then the sheaves dom d’ x> domd, rox and domd, 17 min,x 4r€ fine.

Proof. Using the partition ‘of unity 1 =} f;, we can decompose any
form w as @ = ) f,w where each summand is bounded in the graph
norm as ||d(f,0)ll» < Il fidol . +df; Aol and |ldf, Al < Cllo|l;s .
The rest of the argument is standard. q.e.d.

We shall see (Proposition 3.2.2) that cones and horns have such par-
titions of unity. Also, any singular Riemannian space X which can be
embedded in a smooth Riemannian manifold in such way that the met-
ric on X is locally quasi-isometric to the restriction of the metric on the
ambient manifold, has such partitions of unity; they can be obtained by
restricting onto X the partitions of unity that exist on the ambient man-
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ifold. An example of this kind is given by a complex projective variety
with Fubini-Study metric.

Example 2.8.3. Let X be the blowup of the complex plane C? cen-
tered at the origin, and let the Riemannian metric g, be the pullback

to X of the standard metric on C>. Then the sheaves dom dzp, x and

domzzp’ x are not soft. Indeed, take two noninterecting closed subsets
of the exceptional divisor, and take a germ of functions on their union
which is equal to 0 in a neighborhood of one of the subsets, and to 1 in
a neighborhood of the other. This is a germ of sections of each of these
sheaves which cannot be extended to a section on X . This shows that
both sheaves are not soft, and consequently, not fine; X does not have
partitions of unity with bounded differentials.

Moreover, if p < 4, this germ of functions can be approximated (in
the graph sense) by functions supported away from the exceptional divi-
sor. (To see this, note that a neighborhood of our closed set in X cor-
responds to a union of two disjoint conical parts of a small ball in c? D
Hence, for p < 4 this germ of functions is a germ of sections of the sheaf

dom 32,, min, X which is, consequently, not soft either.

‘3. Cones and Horns

3.1. Metric horns and their L° cohomology.
Definition 3.1.1 (Cf. [4]). Let (X, g,) be a singular Riemannian

space. The metric f-horn C’X is the cone [0,1) x X /0 x X with
the structure of a singular Riemannian space given by the top stratum

E‘fX =(0,1) x/% c ¢/ X and the metric dr2+f(r)2gX on it, where r is
the coordinate on (0, 1) and f isa C* positive nondecreasing function
on (0, 1]. ‘

In case f(r) » 0 as r — 0, the horn metric is quasi-isometric to the
product (“collar”) metric which has been studied above (see §2.4). All the
theorems about the horns formulated below, hold in this trivial case too;
nevertheless, we shall leave to the reader to check this and shall always
assume that f(r) -0 as r —» 0.

Cheeger [4] required that f(r) = O(r) as r — 0; we do not need this
requirement.

Consider the natural projection pr: (0, 1) x X — X . If j)( is equipped

with a local system E, then the top stratum of the horn C TH = 0, )xX
is equipped with its pullback pr" E; we shall always assume this implicitly.
Let m =dimg X .
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Theorem 3.1.2. (a) If the integer k is such that fol F(™P* dr is con-
vergent, then the operator pr*: QIEP(X ) — Q]zp(Cf X) is bounded and in-
duces a cohomology isomorphism H]’f,, (X)> ]]f,,(Cf X).

(b) If the integer k is such that fol f(rH"? kdr is divergent, then

H,(C'x) =0,

provided that either k > m/p+1 or Im{d: dom E’ZF_I(X) — dom Elzp (X)}
is closed in QF,(X).

For example, if f = r°, then part (a) of this theorem covers all k <
m/p + 1/pc, and part (b)—all k > m/p+ 1/pc.

Generally, let e = inf{a € R| fol f(r)™®dr = }. Note that the “bor-
derline” integral fol f(r)"¢dr may either converge or diverge.

Part (a) of our theorem covers all k </, and part (b)—all k >/, where

{ max{k|k < (m +e)/p} if the integral [ f(r)™° dr diverges,
max{k|k < (m +e)/p} if [} f(r)"dr converges.
This integer / dependson p, f and m=dim X .

The proof of Theorem 3.12 is in §5.

Remark 3.1.3. We shall see later that the condition k > m/p+1 in the
part (b) of the theorem can be somewhat weakened. The actual property
that we shall use in the proof is too cumbersome to formulate here. It is
formulated precisely in Remark 5.9.1.

Definition 3.1.4. We shall write / = perv,,  (m+1). We shall consider
perv,, ,a function of m + 1 and call it the (L?, f)-perversity.

Clearly, e > 0 always and / = perv,, , f(m+ 1) > [m/p]. Moreover, the
(L?, f)-perversity is linear: for some real (or rational) number ¢ > —1
we have perv,, (s)=[(s+ e'y/pl.

In case f(r) =r (the conical metric) we have

(3) 1=

pervy, (s) = max{k € Z|k < s/p}.

This perversity was introduced in [2], and Theorem 3.1.2 in case f(r)=r
was conjectured there.
3.2. Metric with f-horn singularities. Let X =X DX, =X, , D
- D X, D.X, be a stratified pseudomanifold of dimension n. This
means the following: X is a topological space, each closed stratum X, is

a closed subset of X, each open stratum X, = X,\X,_, is a smooth k-

manifold, and each point P € i’ « has a neighborhood U C X, a compact
stratified pseudomanifold L, of dimension n —k — 1 (“the link”) and a
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strata-preserving homeomorphism ¢: (U nxX ¢)XCLp = U which induces
a diffeomorphism on each stratum; here CL, = [0, 1) x L,/0 x L, is
the cone over L, with the obvious stratification. Note that X is locally
compact since each link L p 1s compact.

Keeping in line with our previous notation, we denote X = X .
Definition 3.2.1 [4]. Let g be a Riemannian metric on X, and let f
be as in Definition 3.1.1. We say that g has f-horn singularities if the

homeomorphisms ¢ above can be chosen in such way that ¢"g is quasi-

isometric to the product metric on (U N X &) X c’ L, . We shall also say
that (X, g) is a singular Riemannian space with f-horn singularities.
Proposition 3.2.2. If X is a singular Riemannian space with f-horn
singularities, then X has partitions of unity with bounded differentials.
In particular, the sheaves domdy, ,, dom 32,., v » and dom 272,. min, x 9r€
Sfine. ,
Proof. Indeed, any point P has a neighborhood U of the form U ~

o
(UNX,)xC L p where the metrics on both sides are quasi-isometric. It is

fairly obvious that on (U N X’ k) X c’L p We can find continuous functions
with bounded differentials which are equal to 1 in a neighborhood of P
and vanish outside a somewhat larger neighborhood. q.e.d.

3.3. The isomorphism with intersection cohomology. For a perversity
7, we denote by fz?ﬁ' X.E the complex of intersection chain sheaves with
coefficients in E, and by 7 HE'(X ; E) the intersection cohomology of X
with coefficients in E with respect to perversity p. Indexing notation: we
denote by ﬂ,’%k + Wwhat is denoted by IC*~2" in [6].

Theorem 3.3.1. Let X be a singular Riemannian space with f-horn
singularities. Then there is a canonical isomorphism in the derived category
of sheaves

domd;, y g & ‘fgperva,f,X,E'
If X is compact then, in addition, there is a canonical cohomology isomor-
phism H},(X ,E)~IH, f(X; E).

perv,p
Proof. Take any P € X,say, Pe€ X, ,andtake U C X and L, as
above; we may choose U in such way that UN X, is contractible. Using
induction by n = dim X', we may assume that H,,(L,) =1 Hmep’f(L p) -
As L, is compact, TH_, _ J(L ) 1s finite dimensional, and so is H,,(Lp).

By the Open Mapping Theorem, Imd is closed in sz (Lp) . By Theorem
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3.1.2, . ,
H,,(L if k < perv,, (n—m),

Hj,(C'Ly) = w(bp) ATk s pervy (= m)

0 if k > pervy, (n—m).

Since L, is compact,

Hyy(Lp) = H (T(L, ; domdy, | ).

By Lemma 3.3.2,
k J ~ 7% Sr . .
Hp,(C'Ly)= H (I(C" Ly, doma’L,,,CfLP)).
As U~ (UNnX,) x CfLP , it follows from Theorem 2.4.6 that
H*(T(U; domdy, )= H*(T(C'L,; domdys cry ).
Similarly,
H'(T(U\X,,; domdy, )= H (T(C'L,\P; domd}, vy ).

As the metricon C/L p\P is locally—at every point of c’ L\ P—quasi-
isometric to the product metric on (0, 1) x L, , we have

H(T(C'L,\P; domdj, o) HYT((0, 1) x L, ; domd.,))

k
= Hp(Lp).
Putting all this together, we get
H(T(U; domd}, )

_ [ HYT(U\X,,; domdy, ,)) if k <pervy, (n~m),

1o if k > pervy, [(n—m).
The first statement of the theorem now immediately follows from the the-
orem on the uniqueness of the intersection cohomology [6]; the second

one—from (2).
Lemma 3.3.2. Let L be a compact singular Riemannian space. Then

Hy,(C'L) = HYT(C/L; domdy, .r))).

Proof. The difficulty here is that the horn ¢’/ L—which is topologically
an open Cone, c’L= [0, 1) x L/0 x L—is not compact.

We first define the compactification C' L of C'L as T'L = [0, 1] x
L/0x L with the same metric on the top stratum; let j denote the imbed-
ding map C'L < C'L. Clearly, H]’fp(Cf L) = H,’fp (?fL); by compact-
ness,

Hy,(C'L) = HT(C'L; domdy, ).
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On the other hand, note that the imbedding dom d L j, domd; 1’ .C'L

of complexes of sheaves on ffL is a cohomology isomorphism: this is
trivial on C/L and follows from Corollary 2.4.7 on the “outside bound-
ary” 1 x L. As both complexes consist of fine sheaves, this implies the
cohomology isomorphism on the complexes of global sections:

HY (T L; domd, ) = HYT(T'L; j, domdy, (1))
Here
kS . . k f
H'(I(C'L; j,domd, orp))y=H (I(C"L; domd;, L))
and we finally get
ko ~f oy~ oork fr. o
Hyp(C/L)y= HYT(C/L; domd}, o))

Remark 3.3.3. Choosing different functions f for different strata, we
also get intersection cohomology, but with other perversities, not neces-
sarily linear, and any perversity can be obtained this way; this has already
been shown by Nagase [7]. For large enough p, we have the bottom (zero)
perversity; choosing either small p or choosing a function f with a large
value of e (e.g., f = r° with small ¢ > 0), we get the top perversity
t, 1(s) =s—2, and even 7+ 1 (the latter perversity yields the intersec-
tion cohomology which is not a topological invariant of X but is rather

isomorphic to the cohomology of i’ ; see [1]).

4. L? Stokes property
- 4.1. L? Stokes property via sheaves. Let X be a singular Riemannian
space and E a unitary local system on i’ with a pairing Ex E — C as
above.

The sheaf domﬁ;‘p’min’ x,g is always a subsheaf of dom_cf;‘p, X5

Definition 4.1.1. We say that X and E satisfy L? Stokes property
at a point P € X if the stalk at P of the sheaf doma;‘p’min, x5 SO
incides with the stalk of domgzp X.E- We say that X and E satisfy
L? Stokes property everywhere if they satisfy it for every P € X, i.e.,
dOIIlde ,min, X ,E — dOmde X,E-*

Remark 4.1.2. Suppose that X is compact. If L? Stokes property
is satisfied everywhere on X, then domﬁzp min(X) = domﬁzp(X ) (both
spaces are subspaces of sz (X)). The conve}se is also true (again, in case
X is compact), provided that the sheaves dom Ezp, xeg and
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domazp,min’ x.g aresoft, e.g., if X has partitions of unity with bounded
differentials.

For p = 2, this notion was introduced (in the global form only) by
Cheeger [4]; he showed that it implies that the homomorphism from the
space of L? closed and coclosed forms into the L’ cohomology has no
kernel. Let 1/p + 1/g = 1; we shall show that this property (for any
p) implies the Borel-Moore duality between the complexes of sheaves
domZ.Lq, x g and domzzp, x.g» and, in case X is compact, the duality
between L? cohomology and L? cohomology.

4.2. Borel-Moore duality. Recall that for a bounded below complex of
c-soft sheaves of vector spaces, say, & = {0 — gk gk e}, its
Borel-Moore dual [3] is defined as

DF ={ =& g0,

where £/ is the sheaf whose sections on an open subset U C X are
given by '

U; £7') = HomT,(U; 5), C).
Then by Verdier duality D,% * is isomorphic in derived category to
RZom*(F°,D,) where D, is the dualizing complex on X, D, = fic,
f being the map from X to the one-point space.

As usual, for a complex .#° we shall denote by % °[k] the same com-
plex with the grading shifted by & degrees, k& € Z, (F'[k]) = FF.
According to our conventions, on a smooth oriented manifold M of (real)
dimension n, D, C, =C, [m], or D, (C,[m]) = (D,C, )[-m]=C,,.

4.3. L’ Stokes implies duality. Let X be a stratified pseudomanifold
of dimension » which also has the structure of a singular Riemannian
space given by a Riemannian metric on i’ = i’ -

We say that a complex of sheaves on X has constructible cohomology
with respect to the given stratification if the restriction of its cohomology
sheaves onto the open strata are local systems on these strata.

Theorem 4.3.1. If the complexes of sheaves dom E;}’,min, x,g and

domzzq) x § are c-soft, and dom 32,,) X.E has constructible cohomology
(with respect to the given stratification on X), then there is a canonical
isomorphism in the derived category

—e —®
Dydomd;s niy x g = domd;, x gln).

Corollary 4.3.2. Suppose that LF Stokes property is satisfied everywhere
on X, X has partitions of unity with bounded differentials, and one of
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the complexes of sheaves dom d I’ XE and domd, .x.E has constructible
cohomology. Then these complexes of sheaves are Borel-Moore dual to each
other, i.e., Dy domd x.E= domd x.El" and vice versa.

If, in addltlon X is compact then there is Poincaré duality between
H}'(X,E) and H7X (X, E).

(Obvious.)

4.4. Proof of Theorem 4.3.1. We shall construct a quasi-isomorphism
of complexes of sheaves

domg;ﬂ X.E - (DX doma;}? ,min,X,E)[_n]'
For that purpose, we shall construct the quasi-isomorphisms
(4) T(U;domd;. , 5)—T(U; Dydomdy, 0y o)[-n]

for all open neighborhoods U of any point P € X, which have the form
~(UN X g) X CLp, where UnN X . 1s diffeomorphic to an open ball.
W1th U chosen this way, the cohomology of the left- hand side of (4)
is finite dimensional as the complex of sheaves domd, has con-
structible cohomology.
The right-hand side in (4) is, by the definition of the duality functor D, ,
the space (or, more precisely, the complex) of all (not only continuous in
any sense) linear functionals on T' (U; domzzp onin, X’E)[n]:

7, x ,E

T(U; Dydomdy, . v p)[-n]=Hom(T'(U; domdy, .. p)nl, C).
The homomorphism (4) comes from the pairing
(5)  T(U;domdy, i v g) xT(U; domdye y 5) — C[-n]

given by
(6) (@, §) / (2 p g,
U

where @ € T(U;domdy, .. v ), ¢ € T(U;domdys , 5) and k =
deg w. The integral is well-defined since Supp @ is a compact subset of
U, ¢ is L? on Suppw and we can use a version of Holder’s inequality
for forms. The homomorphism (4) thus constructed, commutes with the
differential by Proposition 2.1.2. Note that the integral is nonzero only if
deg w + deg ¢ = n which accounts for the shift [—»] in (5).

Let us see that (4) is a quasi-isomorphism. Note that T'(U; dom Ezq, X.E)
is the domain of the maximal closure d of the operator d in the space



578 BORIS YOUSSIN

I(U; qu .5 With the topoloogy given by the family of seminorms
|lell,« , where K can be any compact subset in U,

g l/q
[|w||L.,,K = (/an{"wl dvol) .

The topological dual to this space (i.e., the space of all continuous lin-
ear functionals on it) is T (U; sz, x,g) > We are not concerned with the
topology on this vector space. _

The adjoint to the (unbounded) operator d in T'(U; qu, X,E) is the
operator Zz’_min in T' (U; Q;‘,,, X,E). This implies that the orthogonal
complement to subspace Imd < T(U; qu’ X,E) is the subspace
Keerin cT(U; sz’ x.g) > and the orthogonal complement to Kerd C
T(U; Qpq y g) contains the subspace Imd , CT (U;Qp y p)-

Claim. The orthogonal complement to lhe subspace Kerd in
I(U; Q;‘q’X’i coincides with the subspace Imd_. in T (U; Q;‘p’X,E).

Note that the factorspace Kerd/Imd is the cohomology of the left-
hand side of (4), and we have already seen that it is finite dimensional; by
the Open Mapping Theorem, the subspace Im d is closed in I'(U, Q;‘q’ X,ﬁ)‘

Proof of the Claim. The operator d yields a continuous linear operator
U, domzzq X B
= —
Kerd
where Imd C T(U; Q¢  5), and T(U; domz;‘q, x.§) is understood in
the graph topology; the operator (7) is one-to-one. As Imd is closed in
I(U; qu , X,E) , we can apply the Open Mapping Theorem which shows

that the operator (7) has a bounded inverse. Hence, there is a bounded
operator

(7) Imd,

—_— —_— r U; Q.q 3
d 1: Imd — ———~——( L—’X’E)
Kerd

Consequently, for any continuous linear functional ¢ on I'(U; qu X &)
which vanishes on Kerd (i.e., an element of T (U Q;‘p, x.g) orthogo-

nal to Kerd), we have a continuous linear functional (3-1)*¢ on Imd ¢
I'(U; Qj« x g) - Choosing some continuous linear extension ¥ of (2_1)*¢
on the entire T(U ; Q;.'I,X,E) ,weget y eI (U; sz,X,E) , Zminvl =¢.
g.e.d.

It follows that the subfactor Kerd/Imd in I(U; Q;‘.I’ x.g) (orin

I' (U; dom Z;‘pymm) X,E)) is the topological dual to the subfactor
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Kerd/Imd in T(U; Qjc y 5) (or in I'(U; domd,, 4 3)) with respect
to the pairing (5). As Kerg/ Imd is finite dimensional, the topology is
unique and Kerzmin /Im Emin is finite dimensional too.

The right-hand side of (4) is Hom(I,(U; domd}, . v p)lnl, C). Its
cohomology is dual to the cohomology of I'.(U ; dom Ezp’min, X,E)[n] ,l.e.,
to Ker Emin /Im zmm , and consequently, is isomorphic to Ker 3/ Imd.

This shows that the homomorphism (4), indeed, induces a cohomology
isomorphism.

Finally, it is clear that the homomorphisms (4) for different open subsets
U c X commute with restrictions. This completes the proof of Theorem
4.3.1.

4.5. When L’ Stokes is satisfied on cones and horns. Theorem 4.3.1
implies the following corollary.

Corollary 4.5.1. Let X be a singular Riemannian space with f-horn
singularities. If LY Stokes property holds on X , then there is an isomor-
phism in derived category J"gp;wLp,f(X ) J’?ﬁt:pe rqu,f(X ) where t is the
top perversity, t(k) =k —2.

Proof. - Indeed, for any perversity 7, DXJ’Z’%' = %:5[11] , n=dimX.
q.e.d.

Let us see when the isomorphism

(8) B (X)) = IR

pervyy . {—perv,q f(X)
is possible. The equality perv,, b= t—perv;, e ic., pervy, f(k) =1(k)—
perv,. f(k) for all integers k > 0, would always imply this isomorphism;
it can be rewritten as
9 perva’f(k) + perqu’f(k) =k-2.

However, (8) may hold even if (9) does not.

Remark 4.5.2. lLet p and g be any perversities. If p # @, then the
isomorphism Jfgﬁ' = J’?E' is equivalent to the following cohomology van-
ishing: for every k and every P € X, , I Hé(LP) = 0 for all integers /
satisfying either p(k) </ < g(k) or g(k) <! < p(k), where L, is the
link of P.

It follows that if (9) is not satisfied, then the isomorphism (8) is equiv-
alent to the cohomology vanishing

!
IHp, , (Lp)=0

for any k,any P € X, and any [ satisfying either
(9a) perva,f(k) <Il<k-2- perqu’f(k)
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or
(9b) k—-2— perqu,f(k) <l< perv[}”f(k)'

Consider the conical case f(r) = r. We have already seen that perv,, ,(k)
= max{i € Z|i < k/p}. In this case the equality (9) for all integers k > 0
is impossible- as clearly

k-2 ifk/pez,

pervy, (k) +pervy. (k)= { k —1 otherwise

Hence, the equality (9) is equivalent to k/p € Z which cannot hold for
all k as p>1.

In other words, “usually” L? Stokes is not satisfied for the conical
metrics since (8) is not satisfied. The following two phenomena can cause
(8) to be satisfied.

First, it may happen that the strata of codimension k such that k/p ¢
7, are simply absent in X ; this is the case for complex manifolds and
p =2, see [4].

Second, it may happen that the cohomology group 7H. p erv (L ), where

L, is the link at a point P and / = perv,, ,(k), vanishes for every point

P e X . and every k such that k/p ¢ Z. (This value of / is the only
one that satisfies (9a) or (9b).)

Any of these two phenomena (or their combination) may cause (8) to
be satisfied for a singular Riemannian space with conical singularities.
Otherwise, as perv,, b t—perv,, ,, there is no morphism

? r ’
domng’X,]E s (DX domqu ,X’E)[——n] >
and consequently, there is no pairing in derived category
domng’X,]E ® domqu’Xj — Dy[-n],

where D, is the dualizing complex of X .

If f(r) =r° with ¢ < 1, then both pervy, . and perv,, . are larger
than in the conical case, and for (8) to hold, it may be necessary for the
cohomology groups I H (L ) to vanish in some range of degrees, as
opposed to just one degree s = [ in the conical case. However, as we
shall see in §5.12, in this case the L” Stokes property does not have to be
satisfied even if (8) holds.

If f(r) =r° with ¢> 1, then

pervy, ,=max{/ € Z|l <(k—1)/p+1/pc}.
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It is easy to see that then perv,, srpervy, . is equal to either k — 2 or
k —1, and it is trickier to distinguish these two cases explicitly. Similarly
to the conical case, the isomorphism (8) is equivalent to the cohomology

vanishing
!

perv,p f(LP) =0
for any k not satisfying (9), any P € X, and /= perv,, (k) Theorem
4.9.1 shows that in this case the 1somorph1sm (8) is, 1ndeed equivalent to
the LP Stokes property.

4.6. L’ Stokes for collars.

Proposition 4.6.1. Let X be a singular Riemannian space satisfying L°
Stokes property. Take o € T'((0, 1)x X ; domde 0, 1)x ), BeT((0, 1)x

X ; dom d 19,0, 1)x x)» Such that one of the forms o, B is supported inside
(0, 1) x K for some compact subset K in X. Then for almost all a, b €

0,1, a<b,
/ Z(a/\ﬂ)=/ aApB.
(a,byxX . bxX—axX

This is a straightforward generalization of Lemma 3.1 of [4]. The proof
given there, extends to our case without any changes whatsoever.

Proposition 4.6.2. Let X be a singular Riemannian space which has
partitions of unity with bounded differentials. If L¥ Stokes property holds
on X, it also holds on (0, 1) x X with the metric of direct product. (For
the local system on (0, 1) x X we take the pullback of the local system on
X)) :
Proof. We know that dom Z;f’ x = dom Ezp

show that domTLp ©.1)

min_x » and we need to

wx =domdys o 1yxx -

Take any germ of sections of domE’Lp, ©, )xX at some point P €
(0,1) x X, say, ¢, we may assume it is defined on an open subset of
the form (o, f) x U C (0, 1) x X where U is an open subset of X . We
want to show that ¢ is a section of dom Ezp possibly, in a
smaller neighborhood of P.

Using partitions of unity, we may assume tht ¢ has compact support
inside (a, f) x U . Proposition 4.6.1 implies that for any y € I'((a, f) x

U; domzzq’(o’l)xx) we have

| deaw-=
(e, B)xU

In terms of the duality pairing (5), it means that for any y € I'((a, ) x
U; doma’Lq,(O,l)xX) we have (do, v) = (¢, dy).

,min, (0, )x X °
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On the other hand, we know that the adjoint to the operator d in
T((a, ) x U; Qpa ¢ 1yxx) is the operator 4, in

I ((a, B)xU; Q;,”,(O,I)XX)’

Hence, ¢ € domd,, , ie., ¢ € T((a, B) x U;domdye i 0 1)
q.e.d.

4.7. When duality implies 1.” Stokes. Let X be any singular Rieman-
nian space. ‘

Proposition 4.1..1. Suppose that the imbedding morphism of complexes
of sheaves domd , — domd X Is a quasi-isomorphism, and, in
addition,

(10) Imd C domd,,

where Imd = Im{domazp ¥ = domgzp’ +}. Then L® Stokes property
holds on X .
Proof. Indeed, consider the complex of sheaves

,min, X

,min, X ?

dom 32,,’ X/domgz,, min, X-
As the imbedding domd, 17 min,x — dom d, 17 x 1is a quasi-isomorphism,
the quotient complex is acychc On the other hand, the property (10)
shows that the differential in the quotient complex has zero image, i.e., is
equal to zero. Hence, the quotient complex is zero. q.e.d.

Clearly, the L” Stokes property implies the inclusion (10).

4.8. The noncohomological obstruction to 7.° Stokes. Now we wish to
analyze property (10). Let X be a singular Riemannian space which has
partitions of unity with bounded differentials.

Proposition 4.8.1. Property (10) is equivalent to each of the following
properties:

(a) For any open subset U C X, if w € T (U; domzzp’X,E), P €
T(U; domdye y 5), then [,dwAdp=0.

(b) Same for @ €T (U; domd,, 4 ), ¢ €T (Us;domdye 4 5).

(c) Same for @ € T (U; domdy, y 5), ¢ €T (U; domdzq,X,E).

Proof. Obviously, property (10) is equivalent to Imd c Ker Emin
where KerzInin = Ker{domgzp min, X,E domzzp .min, x g} - USINg par-
titions of unity, we see that the inclusion of sheaves Imd C Kergmin is
equivalent to the inclusion of vector spaces

Imd =Im{d: T (U; Qp y 5) = T(Us Qp x g}
c Kerd,;, =Ker{d_, : T (U;Qp v ) = T(U; Qp 4 p)}
for each open U C X .

mm
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We know that I' (U ; Qz,, X, g) is the topological dual space to the space
I'(U; qu ’ x,g)» and Ker Emin in the first space is the orthogonal comple-
ment to Imd in the second. Hence, the inclusion Imd C Keraml.m as
subspaces of I' (U; sz ’ X.E) is equivalent to the orthogonality between
Imd c T,(U; Q}, ) and Imd c T(U; Qj. y g) which is precisely
the statement (a).

Obviously, (a) implies (b). To see the opposite, take w and ¢ as in
(a), and find a truncation function f which is equal to 1 on Supp @ and
has compact support inside U . Then Supp f¢ is compact and

/Uzw/\Ej):/Ugw/\E(fqﬁ):O.

Finally, (b) and (c) are equivalent because domd];, x,g and

° . ad -3 .
dom qu’ x § are dense in domd . X.E and domd with respect

to the graph norms,

Example 4.8.2. Take X = [0, 1] with Euclidean metric, so that X =
(0, 1). Properties 4.8.1(a)-(c) are satisfied on X for any p simply because
dimX =1 and deg(dwAdd)>2.

On the other hand, these properties are not satisfied on (0, 1) x X =
(0, 1) x [0, 1] for any p. A counterexample to 4.8.1(a) is given by w =
yh(x), ¢ = x where x is the coordinate on the first factor (0, 1), y is
the coordinate on the second factor [0, 1], and A(x) isa C* function
on (0, 1) with compact support.

Remark 4.8.3. This shows that although L° Stokes property on X
implies L? Stokes property on (0, 1) x X, the similar assertion is not
true for the properties 4.8.1(a)-(c).

These properties are known to hold in the following cases: cones and
horns, p = 2, see the precise conditions in [4]; cones and horns, any p,
see the precise conditions in Theorem 4.9.1; complex algebraic varieties
with Fubini-Study metric, p = 2, see [8, §4, assertion P,]. In all cases
these properties follow from estimates similar to the ones used to prove
cohomology vanishing, but somewhat more delicate.

In Example 5.12.1 these properties do not hold but the imbedding
dom Z;p,mm, < domzzp _x 1s a quasi-isomorphism.

4.9. The L? Stokes property on the horns.

Theorem 4.9.1. Let X be a singular Riemannian space of dimension
n with f-horn singularities, and suppose that f is such that the inte-
gral fol f (r)_l dr diverges. Then the isomorphism in the derived category

D, domgzp Y ES domzzq’ 1 gln] implies the L? Stokes property on X .

L, X ,E
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The proof of this theorem is in §5.10.

If f(r) = O(r) (this was the assumption of Cheeger [4]) then, of course,
the integral fol f (r)_1 dr diverges. In particular, the conical case f(r)=r
falls into this category. We shall see later in Example 5.12.1 that the
condition that the integral fol f (r)—1 dr diverges, is sharp as otherwise the
L? Stokes property does not hold on X for at least some p , whether there
is an isomorphism D, domd;, x.g = dom EZq’ x,gln] or not.

Nagase [7] considered the case f(r) = r° with ¢ < 1; in this case the
integral fol f (r)_1 dr does converge.

5. Calculations on cones and horns

Here we prove Theorems 3.1.2 and 4.9.1. Our main instrument is the
two homotopy operators # % and #'. The operator # 0 corresponds
to the contraction of the horn to its vertex; the explicit contraction 7,
appears in §5.6. The operator # ! corresponds to the contraction of the
horn to the link. We prove the homotopy formulas for these operators
which, first, yield the cohomology isomorphisms, and second, give certain
decompositions which we use to prove the L? Stokes property.

5.1. Notation. We shall write a < b if a < Cbh for some constant C,
and a~bif a<bh and b=a.

Let X be a singular Riemannian space of dimension m, and let g,
be its Riemannian metric. Denote by / the maximal integer k& such that
fol f(r)m_”k dr converges; then [ = pervy, [(m+1).

The top stratum (‘the regular part”) of c'x is diffeomorphicto (0, 1)x
j( ; we shall denote the coordinate on the first factor (0, 1) by r. If w
is a k-form on (0, 1) x j(, we denote its L? norm by lwllyr ory - For
r € (0, 1), we denote by el , the L? norm of w|,, , with respect to
the metric g, on r x X,

Let w = w(r, x) = w,(r, x) + dr A w,(r, x) where o, and w, do
not involve dr. Then for the pointwise norms with respect to the metric
dr? +f(r)2gX on C/X we have lo,| < o], |w,| < o, | = ]a)1|2 +
oyl o) ~ |y + e,

Let dvol, and dvol denote the volume forms on X and c'X re-
spectively. Then

r

dvol = f(r)" dr A dvol,

and
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0l ey = [, loPdvol

(1) ~ [, (e + 170" dr ndvol,

1
= [ eyl + 160" ey

Note that (11) becomes an exact equality if either v, =0 or w, =0.
5.2. Radially constant forms.
Lemma 5.2.1. The operator pr : Q]zp(X ) — Q]zp(C Ix ) is bounded in
I? norm if and only if the integral fol F(rY" "X dr is convergent.
Proof. Take any w € Q]zp(X) . Then from (11),

1
* —pk *
10F @l crx = [ £ e 0l dr

1
= HwH!Ljp!X/O f)" P dr. qed.

We shall say that the form pr* w is radially constant.

Remark 5.2.2. We see that the existence of a nonzero radially constant
form of degree k whichis L? integrable, is equivalent to the convergence
of the integral fol Fr™ " dr.

Denote by doszp(Cf X) the subcomplex of domdzp(Cf X) consist-
ing of all those forms which are radially constant for 2/3 < r < 1, i.e.,
their restrictions onto (2/3,1)x X c C 'X are pullbacks of some forms
on X . Similarly, we shall denote by A%,(C’X) and Q},(C’X) the sub-
spaces of AJ,(C Tx ) and sz(C Ix ) respectively, consisting of all those
forms which are radially constant for 2/3 <r < 1.

Lemma 5.2.3. The inclusion of complexes of vector spaces
domd;,(C /X) < dom d;,(C ' X) induces a cohomology isomorphism.

Proof. By Theorem 2.4.1, there is a cohomology isomorphism
pr': domd;,(X) 5 domd;,((1/2, 1) x X). Moreover, there are explicit
homotopy operators #,, a € (1/2, 1) which act on a form

weQ),((1/2, 1) x X)
by the formula
(Z,w)(r, x) =/ ,(t, x)dt,

where w = o(r, x) = w(r, x) +dr A w,(r, x). For any
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w € domd,((1/2, 1) x X),

for almost any a € (1/2, 1), they satisfy the equality (dZ, + Z d)w
= (Id—pr" P)w where the operator P,: domd;;((1/2,1) x X) —
domdj,(X) acts by the formula P,w = @), - (See [4, §3].)

Let u(r) bea C™ truncation function which is equal to 0 for r < 1/2
andto 1 for r > 2/3.

Let /7;' = u(r)#Z,; this operator preserves the subcomplex
domd;,(C/X). 1t satisfies (4% +%,d)w=(1d —P.)» where P, is some
operator domd},(C’X) — domd},(C’X). Although P. is not defined
on all forms in domdzp(CfX) , for any w € dodep(CfX) , Pw is de-
fined for almost all a. It is clear from this that the inclusion
dom J,}(Cf X) — dom d,:p(Cf X) is a cohomology isomorphism. q.e.d.

Here is the reason we need the complex dom sz(C Ix ) and the spaces
KZ,,(CfX) and ﬁzp(CfX): there is an operator P: INZZ,,(CfX) - Q%,(X)
which acts by

Pw =w|, .

The meaning of this formula is as follows: a)l(z /3. 1)%X is a pullback of
some form on X, and we take Pw to be equal to this form.

Lemma 5.2.4. The operator P: sz(Cf X) — Q}»(X) is bounded in
L? norm.

(Obvious.)

5.3. The homotopy operators. In order to prove Theorems 3.1.2 and
4.9.1, we introduce the two homotopy operators, # L. K’zp(Cf X) —
A1 (C7x) and #°: @, (C/x) — QF;'(C/X). They act on a form
o =w(r, x)=w/(r, x)+dr Aw,(r, x) by the formula

(12) (Fo)r, x) = / rwz(t, x)dt

for a = 0, 1; they transform any form which is radially constant for
2/3 <r < 1, into a form of the same kind.

Proposition 5.3.1.  The operator #*°: ﬁ,’ip(Cf X)— ﬁ,ﬁ;l(Cf X) where
a=0 or a=1, is well-defined and continuous with respect to L* norm,
if and only if one of the following conditions is satisfied:

(a) If a =0, then the integral

(13) /lf(r)—(m—p(k—l))/(p——l) dr
0

converges.
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(b) If a =1, then the integral

(14) / 1"
0

converges.

Proof Let h(r) = f()™" P " VP)w,|, .. Then by (11),

r

1
(15) s oz > Nnlly cr = [ (e dr.

In particular, w, is L” if and only if & is L”.
As Z°w does not involve dr, by (11),

1
—plk—1
170l cre = [ 1l S0
Further,

a
17l , <

/ [lwzlle,ta't‘
a

(16) r
/ h(t)f(t)_(m—p(k_l))/p dtx ’

where the equality takes place if @, is of the form h(r)¢(x) ; in particular,
for any nonnegative L” function # the equality here does take place for
some Lf form w satisfying A(r) = f(r)('""”(k_l))/pl]wzlly,,. Hence,

a p
"% w”Lp,CfX

(17) Lyr —(m=pk—1yjp .| m—p(k—1)
d
< /0 / h(t) () di| f(r) r,

where, as before, the equality can take place for any nonnegative L” func-
tion 4.

Comparing (15) with (17), we see that the operator #“ is bounded if
and only if for some constant C, for any L” function #, we have the

inequality
1
J,

14
oy ar

/ ’ h(e) £(t)~ PP gy

(18) h
P
SC/O |h(n)” dr.
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It will be helpful for us to rewrite the left-hand side of (18) as

—(m—p(k—1)}/p dt f(r)m—p(k—l) dr

iy

Case a = 0: we need to show that the inequality (18) for all L* func-
tions % is equivalent to the convergence of the integral (13).

If k > m/p+1, then we claim that the inequality (18) is always satisfied
and the integral (13) always converges. Indeed, in this case the exponent
—(m—p(k—-1))/p > 0, so the integral (13) clearly converges. Let us show
that the inequality (18) is satisfied. Note that in (19) 1 <r as a =0, and
consequently, f(z) < f(r) since f is nondecreasing, and so

(@) £y~ e <
/ I / ") fp)"mr = dt.p 7 gr < [ / “wad
0 0 0

It is not hard to see that

1 r p 1
/ /h(t)dt drs/ () dr;
0 0 0

the inequality (18) follows immediately.
If Kk <m/p+1,then m—p(k—1)> 0. If the integral (13) converges,
then the inside integral in (18) is a bounded function of r:

/rh(t)f(t)_(m_p(k—l))/p dt

1
< [ moiro ™m0 a

1 1/p 1 1-1/p
S (/ ‘h(l)lp dt) (/ f(t)"‘(m_p(k_l))/(p_l)dt) .
0 0

As the term f(r)" ?*~1 s also bounded, the inequality (18) follows.

Conversely, suppose that inequality (18) holds for any L* function /.
In particular, this means that the inside integral fol h(t) f (t)_(m_p (k=D)1p g4
in (18) converges for any Lf function 4. This means that the function
fm=p&=D)/p s 19 the latter property is the same as the convergence of
the integral (13).

Case a = 1: we need to show that the inequality (18) for all L* func-
tions 4 is equivalent to the convergence of the integral (14).

(19)

14

dr.

dr.
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If kK < m/p+1, then we claim that the inequality (18) is always satisfied
and the integral (14) always converges. Indeed, in this case the exponent
m —p(k —1) > 0, so the integral (14) clearly converges. Let us show that
the inequality (18) is satisfied. In (19) ¢ > r as a = 1, and consequently,
f(t) > f(r) since f is nondecreasing, —(m — p(k ~1))/p < 0, and so
again

(A0 f () " EDE <1,

The same argument as above yields the inequality (18).

If k>m/p+1,then —(m—p(k—1))/p > 0. If the integral (14) con-
verges, then the inequality (18) holds because, clearly, the inside integral
n (18) is a bounded function of r.

Conversely, suppose that the inequality (18) holds for any L? func-
tion 2. In particular, we can take A(r) = —1; then for all » < 1/2 we
have [ h(1)f(1)” m=pk=D)/? gt > & for some & > 0. Hence, the conver-
gence of the left-hand side of (18) implies the convergence of the integral

01 2y (" F *=D qr, and the latter is equivalent to the convergence of
(14).

Remark 5.3.2. Let [, be the minimal integer k for which the operator
. ﬁﬁp(Cf X) — fllzp_l(Cf X) 1is bounded. Then it is bounded for all
k > 1, ; this is due to the fact that if the integral (13) converges for some
value of &, then it converges for all larger values.

We have already seen that this integral converges for all k > m/p +1;
hence, [, <m/p+2.

Let /, be the maximal integer k for which the operator # L !N\Izp( c'x )
- 7\:;1 (C Tx ) is bounded. It is bounded for all k </, , since the integral
(14) converges for all values smaller than some value of k for which it
converges.

We have already known that this integral converges forall k£ < m/p+1;
hence, {, > m/p.

As Z” is bounded forall k > m/p+1,and #' forall k < m/p+1,
for any value of k at least one of these operators is bounded. Hence,
L, > [, ~ 1. If the inequality here is strict, i.e,, /; > /,, then there are
“overlap degrees” k (satisfying /, <k </ ) in which both operators # N
and #' are bounded.

We have denoted by / the maximal k& for which the operator
pr: Q]',ip(X ) — Q,]‘zp,(C x } is bounded, or equivalently, there exist nonzero
radially constant Ef forms of degree k. By Lemma 5.2.1, this / is
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the maximal k for which the integral fol F(r)™ P  dr converges. Clearly,
L =1+1. '

Remark 5.3.3. The “overlap case™ if [y <k </, and degw =k, then
both #°w and #'w are defined and

1 r ‘
(#° - o = pr*fo w,(t, x)dt = pr*/o w1, x)d1| _,
=pr r#’0.

5.4. The homotopy formula in degrees < /. We have seen above that
I=1 -1 andso k </ is equivalent to k </, .

Lemma 54.1. Let k< /. For w € dom pr(CfX) we have
(20) @#' +#'d)w=w-pr Po.

In particular, d#'w is I¥ integrable.

Proof. Denote by d the operator which acts on forms on c’x by
exterior differentiation along X , i.e., by the x variables only, as opposed
to the r variable; then

do=d(w,(r, x)+dr Aw,(r, x))

=daw,(r, x)+drA (?—“’%’r’—x—) ~daoyr, x>> .

As w isa C™ formon (0, 1) x/oY,we have
(21) d#' w)r, x) =d/1rw2(t, x)dt
=drAa,(r, x) +[ dw,(t, x)dt,
(F'dw)(r, x) = /1 (3—‘“%)‘—) —doyt, x)) di
=w,(r, x)—o/(l, x) —/Ircfa)z(t, x)dt,

((d/?/1 +Z/1d)a))(r, x) =é)(r, x)-w,(1, x)=w-pr Po.

Proof of Theorem 3.1.2(a). This follows immediately from the homo-
topy formula (20).

5.5. The operators % and the maps 7,. Suppose we are given a fam-
ily of homeomorphisms 7: [0, 1] — [0, 7,(1)] depending on a parame-
ter ¢ > 0 and satisfying 0 < T,(r) < r for any r € [0, 1]; in particular,
0 < T,(1) £ 1. We shall assume that these homeomorphisms are actu-
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ally diffeomorphisms between (0, 1] and (0, 7,(1)], and that 7,(1) —» 0
as ¢ — 0. By abuse of notation, we shall also denote by 7, the map

c'x - c'x given by (r, x) — (T,(r), x); then the family 7, becomes
a contraction of the cone C/X to its vertex.
We define the operators 7 : A’zp(CfX) — Alzp_l(CfX) by

r

(Zo)r, x) = /T( )wz(t, x)dt.

£

Lemma 5.5.1. If k > [, then #, is bounded in L? norm, and for any
wE Q’zp(CfX) we have || Z,w —;?OcoHL,,’CfX —-0ase—0.

Proof. The argument is similar to the one in the proof of Proposition
5.3.1.

Lemma 5.5.2. For w € dom dz,,(CfX) we have (#,d +dZ)w = @ —
T, w; in particular, if; in addition, T, @ is L’ , then dZw is L" too.

Proof. This is similar to the proof of Lemma 5.4.1:

(dZw)(r, x)=drANw,(r, x)=dT,(r) Nw,(T,(r), x)

+/ do,(t, x)dt,
7,(r)

(22) el = /T:m (?%(Zt_x_) - dolt, x)) a

=w,(r, x)—w(T,(r), x) - /r a7co2(t, x)dt.
T,(n)

Adding up, we get
dZ+Zdw=0-T,w.
5.6. The definition of 7,. Take k > /+ 1 so that the integral
fol f(r™ "% dr diverges.
We make a coordinate change on C ’X from (r,x) to (u, x) where

u(r) = /lr f(™ " ar.

As r varies from 0 to 1, u varies from —co to 0. Denote by r(u) the
function inverse to u(r) .
We define the maps T,: (—oco, 0] — (—oo, —1/¢e] by T,(u)=u—1/e.
As u(r) identifies [—oco, 0] and [0, 1], we get the maps 7,: [0, 1] —
[0, T,(1)] and T,: C'X - C'x.
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Take w =w, +drhw, € domdzp(CfX) and write w = o, +du A @,
where @ = a)z/f(r)m_pk . Then by (11),

1
0l cry~ [ O™ ol + 50" eyl ) dr
(23) %

0
= [ ol g+ SN 3]s ) du,
where a =m —p(k — 1) + p(m — pk) — (m — pk) = p(m+ 1 — pk).

5.7. The homotopy formula in degrees > max((m+1)/p,/+1,1).

Proposition 5.7.1. If k > max((m + 1)/p,! + 1), then for any o €
Q]zp(CfX) the form T, w is L? integrable and its norm »||T:a)i|Lp’CfX -0
as € — 0.

Proof. Note that the exponent o = p(m + 1 — pk) < 0 in (23) since
k>(m+1)/p.

Clearly, T, 0 =T, w, +du AT, @,, s0
(24)

0 :
* p * *
”Tg w”L”,CfX ~ / (”Tg w1”ip,,(u) + f(r)a”Tg wz”il’,,(u)) du
—o0

0
< [ AT 0+ T IT 03l ) du,

because T, f(r(u))* = f(r(u—1/e))* > f(r(u))* since a« <0 and f is
nondecreasing. Performing a coordinate change in (24) yields

* _I/E (o1 ~.
@5) T ol ey s [ eyl gy + S Nyl )

As the integral (23) converges, the right-hand side in (25) is finite and
approaches zero as ¢ — 0.
Corollary 5.7.2. If k > max((m +1)/p, 1+ 1, 1), then for any w €

domﬁlzp(CfX) we have
(26) #'d+d7%w = 0.

In particular, d# %w is I integrable.

Proof. This immediately follows from Proposition 5.7.1 and Lemmas
5.5.2 and 5.5.1.

5.8. The homotopy formula in the borderline degree. Here we consider
the only case which has not been covered yet, namely, when the degree &
satisfies

(27) [ <k <max((m+1)/p,1+1,1).
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Lemma 581. [+ 1<max((m+1)/p,[+1,1)<I+2.

Proof. Obviously, max((m+1)/p,1+1,[)>1+1.

As we have already noted in Remark 5.3.2, /[, =/+1, [, > m/p, and
ly <1+ 1. This shows that, first,
m+1 m+1

—(+1)=—"T——1
( ) 7 L < P

m+1

m
- L=<,
P p

and second,
L=+ =[-1 <1,
Consequently, in any case max((m+1)/p,[+1,[)<!/+2. qed.

Suppose that max((m + 1)/p, [+ 1, 1)) > [+ 1. This is possible only
if either

(28) (m+1)/p>1+1
or ‘
(29) ~ Iy>1+1.

(Both possibilities may hold together.)
The inequality (27) is possible only if max((m+1)/p, I+ 1,1)>1+1
and

(30) k=1+1=1,

Since max((m +1)/p, !+ 1, 1)) > 1+ 1, one of the possibilities (28) or
(29) takes place.

It follows that k < m/p + 1. Indeed, we have either k < (m+ 1)/p
(28) or k <1, (29),and [, < m/p+2 by Remark 5.3.2. Clearly, in both
cases k <m/p+1.

In the assumptions of Theorem 3.1.2, we are in case (b) since k >/ and

the integral fol F(rY™ % dr is divergent; since k < m/p + 1, the subspace
Im{d: domd,, (X)— domd,,(X)} mustbe closed in @, (X).

The equality (30) means that if @ € domc?lzp(Cf X), then #'ow is
defined, #' dw is not necessarily defined as 2" is not bounded in degree
k+1>1 , and consequently, #dw is defined. If k < (m+1)/p (28),
then possibly (|7, ||, cry - 0; if k < §; (29), then #°w may be
undefined. Note that the operator pr- is defined and bounded in degree

k—1=1[ but notin degree k=/+1.
Proposition 5.8.2. In any of these cases,

(31) dFx'v+prv)+ Zdo=o0
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Jor some y € domglzp—l(X ), provided that Imd is closed in Q’ZP(X Y. In

particular, #'w +pr* y € domglz;l(cf X).
Proof. (Cf. [4, Lemma 3.3].) Let w = w,; +dr A w,. From (21) we
get

(d/”/lw)(r, xX)=drAwy(r, x) +/rciw2(t, x)dt.
1

As #%dw is defined, Zdw — #°dw as € — 0. From (22) it follows
that

(32) (Z dw)(r, x) =0, — T:a)1 —/ Ja)z(t, x)dt.
‘ T,(r) ;
By (23),
0
lell’zp,cfx=/_ lell’ip,,(u) du,

and, similarly to (24) and (25), we have

. 0 . —1/¢
”Tg w] ”il’,cfX = / “Tg w] ”ip’r(u) du = / “wl le‘p ’r(u) du - 0
—00 — 00
as ¢ — 0.
Hence, we can take the limit in (32) and get
(/7 dow)(r, x) - l1m/ dcuz(t x)

In particular, the limit exists here in the strong sense.
Adding up yields

(d%1w+f'70dw)(r,x)=w+/ dw,(t, x) dt—hm/ dw,(t, x)

_a)—hm/ dcuz(t X)

o(r, x)—hm/ dw,(t, x)

e~—0

Clearly, ¢ is independent of r and we can write
1 Lol
(33) $=d(x)= lim/ de,(t, x)dt = limd/ w,(t, x)dt.
i—0/s 5—0 F

Hence, ¢ lies in the closure of Im{d: QIZ,TI(X) — L,,(X)} in QL,,(X)
By our assumptions, Imd is closed in lep (X); hence, ¢ =dw for some



I’ COHOMOLOGY OF CONES AND HORNS 595
k-1
Q, (X), and
1 0 =
d¥ o+ % do=w-pr dy

or
d# ' o+ w)+ 7 do = w.

Remark 5.8.3. In case (28) does hold but (29) does not, the opera-
tor #° is bounded in degree k, so # % is defined and the integral
f(; w,(t, x)dt converges o P# 0 = fol w,(t, x)dt as 6 — 0. To-
gether with (33) this shows that P#°w = lim,_ [} w,(z, x)dt lies in

domﬁ,kjl(X) and we can take ¥ = PZ w in (31). By Remark 5.3.3,
Z'w+pr' PZ°w = #"w, so we can rewrite (31) as

(#°d +d# Yo =

In other words, in this case the homotopy formula (26) holds too. Alto-
gether, (26) holds in the degrees k satisfying k > max(/ +1, /).

5.9. Proof of Theorem 3.1.2(b). Indeed, this follows immediately from
the homotopy formulas (26) and (31).

Remark 5.9.1. In the statement of Theorem 3.1.2 we required that if &
is such that the integral fol f(nHmr kdr is divergent (i.e., kK >/+1), then

either k > m/p +1 or Im{d: dom 3;;1(X) — dom gip(X)} is closed in

Q’zp (X). As we mentioned in Remark 3.1.3, we actually need a weaker
condition which we can formulate now: if

k=I1+1=1[ <max((m+1)/p, )

(see (30), (27)), then Im{d: domzlzp_l(X) — domgip(X)} is closed in
Q5 (x).

5.10. Proof of Theorem 4.9.1. We assume that dim X = #, X has f-
horn singularities, fol f (r)—l dr = oo, and there is a duality isomorphism
in the derived category D, dom Elp, xS domzzq) x.5lr]. We need
to show that the L? Stokes property holds at every point P € X. It
follows from Proposition 4.6.2 that it is enough to show that the L? Stokes
property holds on c’ L, where L, is the link of P.

Since both complexes domd, 17 x g and dom d ¢, x,§ have construct-
ible cohomology, the duality 1somorph1sm implies the local duahty iso-
morphisms: for every point P € X we have D, L, domd, L,CL, K &

dom_d_;q 'L, glm + 1] where m=dim/L,.
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By Proposition 4.7.1, it is enough to show that
Imd C domgzp,min’CfLP,E
where _ . .
Imd = Im{donu:il‘p’CfLP‘]E — domd s -rrr g}
By Proposition 4.8.1, this is equivalent to [ L, dondp=0 for we

domdzp(Cf Lp), o€ domdzq(Cf L) such that Suppw and Supp ¢ are
compact subsets of C/L, =1[0, [)x L,/0xL,.

Using induction, we may assume that the L‘;) Stokes property holds on

the singular Riemannian space L, ; in particular, we shall use the fact that
doAdp=0
Ly
for @ € domd,.(L,), ¢ € domdy(Lp). Consequently, if & €
doma,zp(CfLP), ¢ € domd;(C’L,), then for almost all ¢ we have
| dends=o.
JexLp

Applying Proposition 4.6.1 to (g, 1) x L, , we get

doAd$=lim [ dondg=~lim [ wAdd
'L, =0 (s, )xL, 0 ext,
=x Hm [ dong,

g
: JexLp

where ¢~ - O means that the limit is taken as ¢ goes to zero, possibly
avoiding a subset of measure zero in [0, 1). In particular, all these limits
exist, ‘ ‘

Hence, we need to prove that for w € domdy(C'L,), ¢ €
dom dye(C’L,) we have

/ WA d—0,
exLp,
as e~ — Q.

We can assume that Suppw and Supp¢ hein [0, 2/3)xL,/0x L, C
c’L »+ In particular, this means that @ and ¢ are radially constant for
2/3<r<st.

Lemma 5.10.1. (i) In the assumptions of Theorem 4.9.1, we have [, <
ly. i.e., the operators #° and #' can be both defined in no more than
one degree. In particular, this means that I =1, -1 <l - 1.
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(i) If I <k <ly—1, then k =1 and this is possible only if |, =1, — 1
(“no overlap between # ® and #' ).
(iii) Let w € dom Jf,,(Cf L,). Then we can decompose it into the sum

w=d{ +{,+;,

where {,,{,, {; € domglp(CfLP), ¢, is radially constant, and {, is as
Jollows:

(@) If k > 1, —1 (so that 2° is defined in degree k + 1), then {; =
2dw.

(b) If k<1, then {;=#"dw.

e Ifl <k« l0 — 1 (in this case k = 1 by part (ii)), then g5
Z'dw+pt* v for some y € domaip(X) )

Note that cases (a) and (b) do not overlap due to the part (i) of the
Lemma.

Proof. Part (i) Let ¢ be the same as in §3.1. By our assumptions,
the integral fo ~ladr diverges. Hence, ¢ < 1, and if e = 1, then the

integral fo f(n~ dr diverges.
As [, =1+1 (see Remark 5.3.2), we get from (3) the following formula
for [ :
1

max{klk <m/p+1+e/p}
if the integral fol f(r)¢dr diverges,

b= max{klk < m/p+1+e/p}
if [ f(r)~°dr converges.
Similarly, '
( min{k| - (m —p(k - 1))/(p — 1) > —e}
= if the integral fo ~¢dr diverges,
° min{k| — (m — p(k — 1))/( —6’}
{ if fo ~¢dr converges,

min{klk > m/p+ 1+ e/p - e}

if the integral f) f(r)™* dr diverges,
min{klk >m/p+1+e/p— e}

if fol f(r)~¢ dr converges.

By comparing, we see that /| — [, < 1,1ie., [, </,.
Part (i1): By Remark 5.3.2, [+ 1=/ >/,—1. Hence, if | <k <[,—1,
then I<k<l+1,ie,k=1.
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Part (iii): Case k < [: we have the homotopy formula (d.%7"' +.#'d)w
= w — pr’ Pw (20), where d#'w is L? integrable by Lemma 5.4.1;
applying the same statement to de (this is possible since degdw = k+1 <
1), we find that d.%'dw is L” integrable. Take ¢ =Z'w, L, =pr Pw
and ¢, =#'dw; clearly, £, 60 4 ekdomE'Lp(CfLP).

Case k > max(/ + 1, [,): we have the homotopy formula (#Z % +
ax O)a) = w (26), where d.7 %» is L’ integrable by Corollary 5.7.2 (and
by Proposition 5.8.2 and Remark 5.8.3 in case k < (m +1)/p). Applying
Corollary 5.7.2 to dw yields d.# Odw is L? integrable. Take {, = # Ow,
{,=0,and {, = #°dw; dearly, {,,{,, {; € domd,,(C'L,).

What is left, is the cases where / < k < max(/+1, /). We have already
seen in Lemma 5.8.1 that max(/ + 1, /) </ + 2; hence, we are left with
two cases: first, kK =/, and second, k = [+ 1 < max(l + 1, [)), ie,
k=1+1<1. '

Case k =/ again, we have the homotopy formula (dZ v 7 1a’)w =
w — pr' Pw (20), where d#'w is L7 integrable. If k + 1 <
max((m + 1)/p, [ + 1, [,), then by Proposition 5.8.2, Zldo + priy e
dom EZ(Cf X); otherwise, #°dw ¢ dom Elzp(Cf X). In the latter case
both #’dw and #'dw are defined, so by Remark 5.3.3 Zdw =
Z' do+pr* v where w = P#°dw . Take (= 2o, {, =pr'(Po-vy),
and {; = #Z' dw+pr . Again, it follows that {,, {y€ dom?z’_zp(CfLP);
consequently, ¢, € dom Ezp(Cf L) since w = d{, +{; + {;; in particu-
lar, {, is closed as otherwise its differential would be a nonzero radially
constant form of degree / + 1 (it is also easy to see directly that {, is
closed). ,

Case k = [+1 < [,: we have the homotopy formula ¥ 'w+pr w)+
Zdw=w ('31) where Zlo+prrye domﬁﬁ;l(CfX). By Corollary
572, #%dw e domde(C X). Take ¢, = /‘Z*‘w+pr*y/, {,=0,and
§y=#dw; clearly, {, {, {; € domd},(C'L,). ged.

The following is the key estimate in our proof.

Lemma'5.10.2. For any pedomde(C L), let
7% k>,
(=8 #'p ifk' <1,
Flprpry ifk =l+1<l,

where v Is aform in dom EZ_I(LP) such that C lies in do’mglzp—l(Cle',).
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Then for any n € dom a'm“_k’(CfLP) we have

L‘I
/ {An—0,
exL

P
as ¢ —--+0.
For the proof, see below.
Applying this lemma to the case p = dw and n = d¢, we find that if
{5 1s as above, then

lim C3ANde=0.
E=—=PJexL,
Hence,
lim wAdo= lim di+4,+8)ndg
e=—0 exLp e——0 exL,
= lim {,Adp == lim di, Ao,
e=—=0Jexr, e=—0/exr,

where {, is radially constant, {, € dom Eiq(Cf Lp).

In a similar way we can decompose ¢ = d#n,+1,+n, where n,, n,, 15 €
dom _d_zq (C L p), 1, isrtadially constant, and 7, is defined in a way similar
to {;. We then have . .

lim [ wAdg=+lim | dc2‘/\¢=5:11m0
e——

gV exL, ==V JexL, exL

d{, Am,

lim C,Ndn,.

e——0 exLp

) —k
Here {, and #, are radially constant forms, {, € domd Lp(Cf L,),

n, € domdys © (C/L,). If either dZ, =0 or dn, =0, then, clearly, all
our limits are zero. Otherwise, d{, # 0 and dn, # 0 are radially constant
forms which are I’ and L7 integrable, respectively. By Lemma 5.2.1,
their degrees k+1 and m—k are such that the integrals fol f(nm" k41 gy
and fol F(r)" "8 gy are convergent. By our assumptions, fol fintdr
is divergent, hence, m — p(k +1) > —1 and m —g(m ~ k) > —1. Then
k+1<(m+1)/p and m— k < (m+ 1)/g; adding these inequalities, we
get m+1<(m+1)/p+(m+1)/qg =m+ 1, which is a contradiction.
Consequently, either d{, = 0 or dn, = 0 and our limits are zero. (Cf.

5.11. Proof of Lemma 5.10.2. Let us first estimate /#“p where degp =
k' and a=0 if k'zlo, a=1if k'<lo.
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Let p = p, —*—dr/\p2 where p, and p, do notinvolve dr. Asin §5.3,
let h(r) = f(r)m Pk “”/PupzuL,, . Then, similarly to (16),

1761, < | [ BOr0 7 ”’dr\

r ) 1/p
”%ap”y,,ﬁ / h(t)p /f(t m—p(k’—1))/(p— D 4t
a

1 /p r R
< (/ h(t) dz) / f(t)—(m—p(k —D)/e=1) 4,
0 a

Similarly to (15), we have [y h(r)y dr = ||p,|I?, orx S el C,X , SO

(34) ”%aP“LP ,__”p”Lp o' x / f0 —(m—p(k'=1))/(p— l)dt

Now let us estimate {. We claim that in any case

r !
/ £y~ E == dt‘
a

for r close enough to zero. Indeed, { = #“p unless kK’ = [+ 1 < ly»
and { =Z“p+pr y if k' =1+ 1 <,. In the first case the inequality
(35) follows immediately from (34). In the second @ = 1 and k' <

[, ; the latter means that the integral fol fl~mr K=)/=1) g diverges.
Consequently, in (35) we have

r , 1
| / f(t)—on—p(k “D)/e=1 4,
a

as r — 0, and the inequality (35) follows from
Il , =1#°p +or vl , < UZ°lp , +lpC vy,

r ; 1-1/p
/ f(t)—on—p(k ~D)/e-1) 4,
. .

+ const
r 1)
/ £y~ (mtk "”)/(”‘”dz’
a

and hence,

‘1 1/p

!1—1/17

—1/p

1-1/p
(35) “C“Lp,rf'”p“LP’CfX

—1/p
— 00

< “p”L”,CfX

1-1/p

= HPHLP,CfX‘

for r close enough to zero.
For any form x = x, +dr A x, on CfLP , denote by H)(HLP’,X[‘P the

L? norm of the restriction of y onto the slice r x L, , with respect to
the metric on the slice which is induced by the metric on C 4 L,. This
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induced metric is clearly equal to f (r)szP where g, is the metric on
P
L, . Consequently, if degx =s then

(36) Wt e, = Ml ST
Combining this with (11), we get

D ! I4 ’
(37) 1 err, = [ Ntk ez,

As deg{ =k"— 1, (36) and (35) yield
(38) lize,rur,

1-1/p .
—plk —1
l F(r)mrtE =D

r I
/ f(,)—(m—p(k —D)/e=1) 4,
a

for r close enough to zero.
Suppose that lim,__, |, L, {An+#0. Since

=< ”p”L",CfLP

/ A W g Wil

P

the inequality (38) implies that

r I
/ f(t)—(m—p(k ~D)/@-1) 4,
a

for some ¢ > 0 and almost all r satisfying 0 < r < ¢. Noting that
1-1/p=1/q, we get

r ’
/ f(t)—on—p(k ~D)/p=1) 4,
a

for almost all r satisfying 0 < r < ¢. Similarly using (37), we obtain
. .
”n”‘;‘q’chP _>_ /0 ”ﬂ”%q,,prdr
I3 r . -1 . ,
> / / f(t)—(m—p(k -1)/(p-1) dtl f(r)—(m—p(k —D/=1) g,
0 a

Denote g(r) = |, f(t)_(m—”(k'_l))/("_l) dt; then

—(1-1 ,
(1=1/p) £ =

Ilze, ez, =

-1

F(ry~mmp® =1)/=1)

q
llﬂlqu,rxL,, =

e : A
1llde oo, = /O 11" g (r) dr = | In(lg(IDIS).
In case a=0 we have k' >, so the integral fol f(t)_(m—p(kl—l))/(p_‘) dt
converges and g(r) — 0 as r — O, which means that Ing(r) —» —oco as
r—0,and |n;.

,CfLP =00.
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Incase a=1 we have k' </, so the integral fol f(ytm=ple =N/ @=D gy
diverges and |g(r)| — co as r — 0, which also means that ||n||Lq,CfLP =
O .
We see that in both cases 7 is not L? integrable on c’r p> Which is a
contradiction.

5.12. The case where fol f (r)_1 dr converges.

Example 5.12.1. Consider a singular Riemannian space X with f-
horn singularities which also has the following properties.

First, we assume that the duality isomorphism D, domdzp XE =

dom 324 , X,E[”] holds on X ; this may be achieved by making sure that
the appropriate cohomology groups of the links vanish; see §4.5.

Second, we assume that for some point P € X the L” Stokes is satisfied
on the link L,; for example, we may assume that L, is smooth. Let
m=dimL,. ‘

Third, we assume that the function f is such that the integral
fol f(r)~'dr converges.

Fourth, suppose that (m+1)/p € Z.

We claim that under these assumptions, the L? Stokes property, as well
as the property (10) (“the noncohomological obstruction to L? Stokes™),
is not satisfied at P.

Indeed, let k = (m+1)/p—1 and s=(m+1)/g—1=m—k-1.
Take a k-form w on L., which is C*° and has compact support inside

2 p> we shall assume dy #0. Let w = pr* v . Formula (3) shows that
5y f(N™ P dr and Jo £y P * D dr converge (cf. the calculations at
the end of §5.10). Hence, both @ and dw are L integrable on C’ Lp.

Let ¢ = pr (xdy) where x is taken with respect to the metric g,
Then deg¢ = m — (k + 1) = 5, and the similar argument shows that ¢
and d¢ are L integrable on c’ L, . Thus

/&'XL

P

.dw/\qS:/ dy Axdy >0,
LP

which is a nonzero constant, independent of ¢. As we have seen at the
beginning of §5.10, ‘

/ dondd=F lim do Ao,
c’r, 0

eV ex L,
consequently,

/ doAde#0.
‘L,
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Hence, the properties 4.8.1(a)-(c) and (10), as well as L? Stokes, do not
hold at P. In this case, the failure of L? Stokes has noncohomological
nature.

This example also shows that the condition fol f (r)_l dr = oc in The-
orem 4.9.1 is sharp.

Notes added in proof.

1. After this paper was written, I found out that a different proof of
Theorem 2.2.1 appeared in the paper: V. M. Gol'dshtein, V. I. Kuz'minov
& 1. A. Shvedov, A property of de Rham regularization operators, Sibirsk.
Mat. Z. 25 (1984) 104-111 (in Russian; English translation in Siberian
Math. J. 27 (1986) 35-44), Corollary 2. A different proof of Theorem
3.1.2 appeared in the paper: V. M. Gol'dshtein, V. I. Kuz'minov & L. A.
Shvedov, On Cheeger’s theorem: extensions to Lp-cohomology of warped
cylinders, Siberian Advances in Math. 2 (1992) 114-122.

2. It is my pleasure to express my warm thanks to the anonymous
referee and to the editor, Professor C. C. Hsiung, for many suggestions on
improvement of the manuscript.

3. Professor Oshawa advised me recently that the arguments in [8]
contained a gap.
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